7^2+b^2=256

Simple and best practice solution for 7^2+b^2=256 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2+b^2=256 equation:



7^2+b^2=256
We move all terms to the left:
7^2+b^2-(256)=0
determiningTheFunctionDomain b^2-256+7^2=0
We add all the numbers together, and all the variables
b^2-207=0
a = 1; b = 0; c = -207;
Δ = b2-4ac
Δ = 02-4·1·(-207)
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{23}}{2*1}=\frac{0-6\sqrt{23}}{2} =-\frac{6\sqrt{23}}{2} =-3\sqrt{23} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{23}}{2*1}=\frac{0+6\sqrt{23}}{2} =\frac{6\sqrt{23}}{2} =3\sqrt{23} $

See similar equations:

| -3c-2(2-4c)=52 | | (X)=(x-8)/(3x+6) | | 2x-3=3x-28 | | 12+2c+3(1-4c)=21 | | -12+2c+2c+3(1-4c)=21 | | d/15+19=28 | | 4p-7=2(p=3) | | 3x^2-17x+8=0 | | 373.36=220+0.54x | | (27/18)=(x/58) | | 2x-8(x+6)=6 | | 60=9x–3 | | y/2+3=-12 | | -4.5=-0.5(r-7.1 | | 27/18=x/58 | | 20w−16w−2w+3w−3w=4 | | -8x+8-5x+4=20 | | R(-6-2y-3)+y=56 | | (4x+9)(x-5)=0 | | −30=12-6x | | 2-3x+1=-2x+3+x | | 2z+2z+2z+z-5z=18 | | 900=135+5x−4+7x−64+120+6x−8+4x+15+3x+31 | | 2z+2z+2z+z=18 | | 2(x+3)+x=5 | | 3/8x-7/10-12x5/16-2x-3/20+4x+9/4+7*7/80=0 | | 10=-1|4x+12 | | 0.8c+3.4=74 | | x/3+5x/2=34 | | 3x+x+6=34 | | -8=16-2x | | F(x)=x^2-16x-100 |

Equations solver categories